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1 Introduction 
Progntm synthesis is the process of automatically deriving executable code from 
(non-executable) high-level specifications. It is more flexible and powerful than 
conventional code generation techniques that simply translate algorithmic speci- 
fications into lower-level code or only create code skeletons from structural spec- 
ifications (such as UML class diagrams). Key to building a successful synthesis 
system is specializing to an appropriate application domain. The AUTOBAYES 
[2] and AUTOFILTER [5] systems, under development at NASA Ames, operate 
in the two domains of data analysis and state estimation, respectively. 

The central concept of both systems is the schema, a representation of 
reusable computational knowledge. This can take various forms, including high- 
level algorithm templates, code optimizations, datatype refinements, or archi- 
tectural information. A schema also contains applicability conditions that are 
used to determine when it can be applied safely. These conditions can refer to 
the initial specscation, to  intermediate results, or to elements of the partially - 
instantiated code. Schema-based synthesis uses AI technology to recursively 
apply schemas to gradually refine a specification into executable code. This 
process proceeds in two main phases. A front-end gradually transforms the 
problem specification into a program represented in an abstract intermediate 
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code. A ‘backend then compiles this further down into a concrete target pro- 
gramming language of choice. A core engine applies schemas on the initial 
problem specification, then uses the output of those schemas as the input for 
other schemas, until the full implementation is generated. Since there might be 
different schemas that implement Merent solutions to the same problem this 
process ciyl generate an entire solution tree. 

AUTOBAYES and AUTOFILTER have reached the level of maturity where 
they enable users to solve interesting application problems, e.g., the analysis 
of Hubble Space Telescope images. They are large (in total around 100lhC 
Prolog), knowledgeintensive systems that employ complex symbolic reasoning 
to generate a wide range of non-trivial programs for complex application do- 
mains. Their schemas can have complex interactions, which make it hard to  
change them in isolation or even understand what an existing schema actually 
does. Adding more capabilities by increasing the number of schemas will only 
worsen this situation, ultimately leading to the “entropy death” of the synthesis 
system. 

The root came of this problem is that the domain knowledge is scattered 
throughout the entire system and only represented implicitly in the schema im- 
plementations. In our current work, we are addressing this problem by making 
explicit the howledge from Merent parts of the synthesis system. Here; we 
discuss how Gruber’s definition of an ontology as ‘‘an explicit specification of 
a conceptualization” [4] matches our efforts in identifymg and explicating the 
domain-specific concepts. We outline the dual role ontologies play in schema- 
based synthesis and argue that they address different audiences and serve differ- 
ent purposes. Their first role is descriptive: they serve as explicit documenta- 
tion, and help to  understand the internal structure of the system. Their second 
role is prescriptive: they provide the formal basis against which the other parts 
of the system (e.g., schemas) can be checked. Their final role is referential: on- 
tologies also provide semantically meaningful ^hooks” which allow schemas and 
tools to access the internal state of the program derivation process (e.g., frag- 
ments of the generated code) in domain-specific rather than language-specific 
terms, and thus to modify it in a controlled fashion. 

For discussion purposes we use AUTOLINEAR, a small synthesis system we 
are currently experimenting with, which can generate code for solving a system 
of linear equations, Az = b. 

2 Sources of knowledge and concepts 
Program synthesis systems are knowledge-rich and work with concepts from 

I_ -  1 .. -- - 2 ‘ j  wide range of different sources. Each of the sources introduces concepts on 
a different level of abstraction. However, as the synthesis process is in fact 
a gradual refinement (although not necessarily in the technical sense of the 
word), concepts from the different sources are often related (e.g. matrices as 
mathematical concept, as elements of problem specifications, as datatypes in an 
intermediate language, and as two-dimensional arrays in a target language). We 
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use ontologies to formally declare and then categorize these diverse concepts, 
and link related concepts together. 

Generative programming [l] distinguishes between the appZication space and 
the solution space as the two sources of concepts. We will keep this as a top-level 
categorization, but argue that we need a more rehed  distinction. In the rest 
of this section we identlfy the different concept sources and the major concepts 
for each of these sources. 

2.1 Application space 
Intuitively, the application space contains d concepts that are required to  de- 
scribe the application problem. For AUTOLINEAR, this includes data types like 
vector and matrix, operations like matrix element selection and matrix addi- 
tion, and predicates like is-diagonal and isinvertible. These concepts have to 
be defined by application domain experts. Since they constitute the common 
vocabulary of discourse for the different parts of the system and for the user, the 
format must be understandable by the different participants. For example, we 
aim to explicitly link the domain concepts to representations from the specifica- 
tion language, to intermediate language constructs and to target programming 
language constructs. In this way, the h a l  program can be documented with 
meaningid annotations. 

However, not all concepts are equal. While some concepts are available 
to the users of the synthesis system to formulate their problem specifications 
(e.g., matrix), others are only used by the system developers to implement the 
schemas (e.g., diagonal). In general, we thus refine the application space into 
the 

problem specification domain i.e., concepts that are used to formulate the 
high-level problem specifications, and the 

background theory domain i.e., concepts that are not expressible in prob- 
lem specifications but are required to formulate semaulic constraints such 
as the correctness of specifications or schema applicability conditions. 

It is important to  note that the problem specification domain is not the speci- 
fication language itself but rather defines its abstract syntax. The different d e  
main concepts such as vector and matrix can have different associated syntaxes 
("syntactic sugar") in different specification languages. For example, AUTO- 
LINEAR uses a Matlab-like notation for specifying matrix literals, but this could 
be changed easily by adapting a new parser for the specification language. 

2.2 Solution space 
Intuitively, the solution space contains all concepts that are required to  formu- 
late the generated programs. However, since the semantic gap between speciiica- 
tions and generated programs is large (i.e., specifications are much more concise 
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than programs), the solution space is not a simple dud  of the application space 
but provides a much wider variety of concepts. 

L i e  the application space, the solution space is refined into several domains: 

intermediate language domain i.e., elements of the intermediate language 
or languages, 

target language domain Le., elements of the target language and environ- 
ment, 

algorithm domain i.e., the Werent algorithms and sub-algorithms that are 
implemented as schemas, 

search control domain Le., concepts that are not expressible in the language 
domains but that are used to control the search for applicable schemas, 
and 

meta-programming kernel i.e.; concepts expressing operations on objects 
defined in any of the other domains that can be used to implement schemas. 

AUTOLINEAR’S intermediate language contains the usual procedural program- 
ming constructs (e.g., variable declaration, for-loop, if-then-else branch, function 
definitions) and basic data types (e.g., int, double, bool). In addition, it also 
contains higher-level programming constructs (e.g., finite summations and con- 
vergence loops) and data types and operations representing application domain 
concepts (e.g., matrix and matrix operations). However, the intermediate lan- 
guage domain also contains concepts reflecting programming language semantics 
(e.g., lvalue and scope) which are used to d e h e  and enforce the wellformedness 
of the generated code fragments. AUTOLINEAR uses Herent versions of the in- 
termediate language at Herent stages of the refinement process. Each version 
is more restricted in its use of the higher-level concepts. The final stage of this 
produces executable code for the chosen target. This is an actual programming 
language (i.e., C or C++) toghether with a suitable implementation of the rel- 
evant application domain concepts (e.g., matrix), either using target libraries 
(e.g., the Matrix-class i7om the Octave library) or using concepts available in 
the language (e.g., two-dimensional array). Note that the distinction between 
the intermediate language used in the front-end and the target language used in 
the backend is a consequence of our design. In principle, both language domains 
could be integrated. 

3 Benefits of Ontologies 
_ L  * -  , -. ^^ . -_ 

We are currentb reengineer& our system so tdattge concepti-it manipulatei- . 
are grounded with respect to explicit ontologies. The idea is that the synthesis 
system will manipulate a sequence of models (input model, intermediate models, 
platform-independent model, platform specific model, and so on), where each 
model is built &om concepts from a given ontology. We believe that the use of 
ontologies will bring numerous benefits: 
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1. The ontology acts as documentatzon for  programmers. A large part of the 
diilicdty in understanding a schema is determining the input requirements 
and what structures are expected for output. Schema inputs =e often very 
complex and usually contain mtermediate results fiom previous schemas, 
as well as parts of the original problem specification, and must comply 
with the specification of the target language and the target architecture. 

2. It makes m t z n g  schemas w e e r .  Using a formally defined ontology, we can 
automatically generate models and an API for model manipulation which 
can then be used in the schema code, so that programmers do not have to 
deal with the internal representation of models. The A P I  has constructors 
for concepts and getter/setter methods for concept attributes. It also lets 
schemas access higher-lever predicates built on ontological reasoning (e-g. 
a m a t w  2s square, a mat% zs sparse). 

3. It controls schema znteractzon. Schemas produce partially instantiated 
code. In a sense, they can be regarded as constructing code families. Thus, 
for schemas to interact consistently they need to  agree on the properties 
of these families, and this is achieved by using an ontology. 

4. It faczlztates extenszons. By making explicit which domain concepts are 
used in the various languages, the system can more easily be ported to 
new domains, possibly reusing some parts of the ontology. 

5. It allows '11s to valadate the output of a schema. If the ontology is for- 
mally defined, the system can automatically check whether the output of 
a schema is well-structured and whether any additional constraints which 
may be required hold. 

6. It ensures wnssstency throughout the syntheszs process. Schemas can be 
seen as gradually refining abstract concepts from the specification do- 
main into a concrete implementation !e.g., matrzx). Although we do not 
formally define schemas as refinements, linking abstract and concrete con- 
cepts to a common concept in the ontology can ensure consistency. 

7. It enables generatzon of addztzonal knowledge-baed artzfacts. Schemas can 
be augmented with ontological information. This allows the possibility of 
generating informative artifacts relating to the derivation process, such as 
documentation explaining how the code has been derived. This can be 
recorded either as in-line comments, or as a separate document. Besides 
mark-up intended for humans, we can also generate logical annotations 
which can be used for automated verification of the code. 

-.There are several possible languages which can be used to represent the 
ontologies and we are currently evaluating OWL, KIF', and UML, with respect 
to  two main criteria: 

Expressiveness The language should be able to express complicated con- 
straints (e.g. type-checking) and support higher-level concepts (e.g. square 
matrix, sparse matrix). 

- - 
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Tool support Tools should integrate easily with the synthesis environment 
and be able to verify that models produced by schemas comply with a 
given ontolo=. Code generation is an advantage. Editing and viewing 
&pabilities are especially valuable for complex ontologies. 

Ontologies can be used to classify schemas and enrich the core engine so 
that it has greater control over the derivation process. The extra knowledge 
also should also allow us to systematize the documentation generation and au- 
tomated certification capabilities of the synthesis system. 
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